8-Chloro-5-(4-methylpiperazin-1-yl)-11*H*pyrido[2,3-*b*][1,5]benzodiazepine

Léon Dupont,^a* Jean-François Liégeois,^b Françoise Rogister^b and Jacques Delarge^b

^aUnité de Cristallographie, Institut de Physique B5, Université de Liège au Sart Tilman, B-4000 Liège, Belgium, and ^bLaboratoire de Chimie Pharmaceutique, Institut de Pharmacie F1, Université de Liège, Rue Fusch 5, B-4000 Liège, Belgium. E-mail: u210406@vm1.ulg.ac.be

(Received 23 June 1995; accepted 29 August 1995)

Abstract

The crystal structure determination of $C_{17}H_{18}ClN_5$ has been undertaken as part of our studies of dopamine receptors. The diazepine ring is in a boat conformation while the piperazine ring is in the normal chair conformation. The dihedral angle between the two aromatic rings that lie on the same side of the diazepine moiety is 126.4 (1)°. There is one N—H···N hydrogen bond [N···N 3.184 (3) Å].

Comment

The title compound, (I), was prepared as part of our study of dopamine receptors and related binding sites implicated in schizophrenia diseases (Liégeois, 1992; Liégeois, Bruhwyler et al., 1993; Liégeois, Rogister et al., 1994). (I) is a strict bioisoster of clozapine, (II), the crystal structure of which was determined by Petcher & Weber (1976). Despite a great similarity between the two structures, (I) presented lower affinities for the studied receptors (Liégeois, 1992). In order to find a successor to clozapine, and to better understand the mechanisms of action of antipsychotic drugs, different studies are in development. Among them, some crystallographic structures of related compounds have been determined, such as that of 3-methyl-6-(4-methylpiperazin-1-yl)-11H-pyrido[2,3-b][1,4]benzodiazepine, (III) (Dupont, Liégeois, Rogister & Delarge, 1995).

©1996 International Union of Crystallography Printed in Great Britain – all rights reserved

In (I), the diazepine ring has a boat conformation where the four C atoms of the outer ring junctions are almost coplanar: the maximum deviation from their mean plane is 0.034(2) Å [(II) 0.013(3), (III) 0.017(1)Å]. The deviation of the 'prow of the boat', N5, is -0.551(4) Å, and those of N12 and C13 ('the stern') -0.668(4) and -0.667(4) Å, respectively. The corresponding deviations in (II) are -0.647(3), -0.733 (3) and -0.712 (3) Å, respectively, and in (III) -0.582(2), -0.712(3) and -0.767(3)Å, respectively. The distances between the N-methylpiperazine atom and the centres of the two aromatic rings are 7.739(4) and 6.021 (4) Å [7.716 (3) and 5.972 (3) Å in (II), 7.727 (4) and 6.084 (4) Å in (III)]. The dihedral angle between the two aromatic rings $[126.4(1)^{\circ}]$ is larger than in (II) $[115.0(1)^{\circ}]$ and in (III) $[119.4(1)^{\circ}]$. There is one intermolecular hydrogen bond, N5-H5...N3ⁱ [N5...N3ⁱ 3.184 (3), $H5 \cdots N3^{i}$ 2.19 Å, $N5 - H5 \cdots N3^{i}$ 165°; symmetry code: (i) 1 - x, -1 - y, -z].

Fig. 1. Molecular structure with atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are drawn as small circles of arbitrary radii.

Experimental

The compound was prepared as described by Liégeois (1992), at the Laboratory of Medicinal Chemistry of Liège. Crystals were obtained from *n*-hexane solution at room temperature.

392

Crystal data

C₁₇H₁₈ClN₅ $M_r = 327.81$ Monoclinic $P2_1/n$ a = 11.9739 (12) Å b = 10.2088 (11) Å c = 14.662 (2) Å $\beta = 113.836$ (7)° V = 1639.4 (3) Å³ Z = 4 $D_x = 1.328$ Mg m⁻³

Data collection

Stoe Siemens AED four-
circle diffractometer
ω scans
Absorption correction:
ψ scan (EMPIR; Stoe &
Cie, 1987b)
$T_{\min} = 0.506, T_{\max} =$
0.564
2170 measured reflections
2055 independent reflections

Refinement

$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.186 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.266 \ {\rm e} \ {\rm \AA}^{-3}$
Extinction correction:
SHELXL93 (Sheldrick,
1993)
Extinction coefficient:
0.0061 (5)
Atomic scattering factors
from International Tables
for Crystallography (1992,
Vol. C, Tables 4.2.6.8 and
6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$$

	x	у	Ζ	U_{eq}	
C11	0.96610 (9)	0.02019 (9)	0.23743 (7)	0.0870 (4)	
Cl	0.7752 (3)	-0.7615 (3)	-0.0122(2)	0.0671 (9)	
C2	0.6702 (3)	-0.7370(3)	0.0020 (2)	0.0690 (9)	
N3	0.6237 (2)	-0.6188 (3)	0.0014 (2)	0.0614 (7)	
C4	0.6815 (2)	-0.5177 (3)	-0.0176 (2)	0.0514 (7)	
N5	0.6368 (2)	-0.3932 (2)	-0.0116 (2)	0.0569 (7)	
C6	0.7212 (2)	-0.3013 (3)	0.0513 (2)	0.0511 (7)	
C7	0.7030 (3)	-0.2462 (3)	0.1310 (2)	0.0645 (9)	
C8	0.7777 (3)	-0.1492 (3)	0.1892 (2)	0.0662 (9)	
C9	0.8729 (3)	-0.1059 (3)	0.1678 (2)	0.0573 (8)	
C10	0.8950 (3)	-0.1598 (3)	0.0901 (2)	0.0543 (8)	
C11	0.8211 (2)	-0.2602 (3)	0.0320(2)	0.0483 (7)	
N12	0.8460 (2)	-0.3013 (2)	-0.0491 (2)	0.0490 (6)	
C13	0.8269 (2)	-0.4186 (3)	-0.0835 (2)	0.0461 (7)	
C14	0.7809 (2)	-0.5318 (3)	-0.0442 (2)	0.0475 (7)	
C15	0.8297 (3)	-0.6560 (3)	-0.0371 (2)	0.0569 (8)	
N16	0.8595 (2)	-0.4494 (2)	-0.1612 (2)	0.0508 (6)	
C17	0.7896 (3)	-0.5395 (3)	-0.2417 (2)	0.0630 (9)	
C18	0.8729 (3)	-0.6026 (3)	-0.2829 (2)	0.0664 (9)	

	N19	0.9291 (2)	-0.5035 (2)	-0.3215 (2)	0.0545 (6)
	C20	0.9983 (3)	-0.4132 (3)	-0.2424 (2)	0.0570 (8)
Cu $K\alpha$ radiation	C21	0.9185 (3)	-0.3481 (3)	-0.1982 (2)	0.0573 (8)
$\lambda = 1.5418$ Å	C22	1.0063 (3)	-0.5635 (4)	-0.3656 (3)	0.0813 (11)
Cell parameters from 35					•	
reflections	Table 2. Selected geometric parameters (A, °)					
$\theta = 24.30 - 34.40$	CI1—C9		1.739 (3)	N12-	C13	1.284 (3)
$\mu = 2.109 \text{ mm}^{-1}$	C2—N3		1.327 (4)	C13–	–N16	1.381 (3)
T = 293 (2) K	N3-C4		1.333 (3)	C13–	C14	1.492 (4)
Prism	C4—N5		1.396 (4)	N16-	–C17	1.463 (3)
$0.42 \times 0.42 \times 0.34$ mm	C4C14		1.402 (4)	N16-	C21	1.474 (3)
	N5-C6		1.414 (4)	C18–	–N19	1.452 (4)
Colouriess	C6-C11		1.400 (4)	N19-	C20	1.451 (3)
	C11—N12		1.401 (3)	N19-	C22	1.458 (4)
	C2—N3—	-C4	116.9 (2)	N12-	-C13-N16	118.2 (2)
	N3-C4N5		116.5 (2)	N12-	C13C14	127.2 (2)
1408 1 1 0	N5-C4-	-C14	120.1 (2)	N16-	C13C14	114.4 (2)
1428 observed reflections	C4—N5—	-C6	117.0 (2)	C1—	C15—C14	120.2 (3)
$[I > 2\sigma(I)]$	C7—C6—	N5	120.1 (2)	C13–	–N16—C17	123.2 (2)
$R_{\rm int} = 0.0239$	C11—C6-	-N5	120.8 (2)	C13-	–N16—C21	118.7 (2)
$\theta_{\rm max} = 55.00^{\circ}$	C8-C9-	CII	120.0 (2)	C17-	-N16-C21	110.3 (2)
$h = -12 \rightarrow 0$	C10-C9-	-CII	119.2 (2)	C20-	-N19-C18	109.6 (2)
$n = -12 \rightarrow 0$	C9-C10-		120.7 (3)	C20-	-N19-C22	111.2 (2)
$k = 0 \rightarrow 10$		N12	116.0 (2)	C18-	-NI9-C22	110.9(2)
$l = -14 \rightarrow 15$	C13N12	e—cn	123.2 (2)			
2 standard reflections	N3	-N5—C6	126.1 (3)	C11–	–N12—C13—N16	-177.4 (2)
frequency: 60 min	C14-C4-	-N5-C6	-54.9 (3)	C11-	-N12-C13-C14	-2.4 (4)
intensity decay: 5%	C4—N5—	-C6C7	-120.3(3)	N5—	-C4C14C13	-10.8(4)
intensity decay: 5 h	C4—N5—	-C6C11	62.5 (3)	N16-	-C13-C14-C15	37.0 (4)
	CIIC9		-1/9.3 (2)	N12-	-C13-C14-C4	45.2 (4)
	C9C10-	-CII-NIZ	1/5.6 (2)	NIO-	-C13-C14-C4	-139.6 (3)
$(\Lambda/\sigma) < 0.001$		CII-NIZ	-1/5.8 (3)	NIZ-	-C13 NIG $-C17$	- 144.2 (3)
$(\Delta/0)_{\text{max}} < 0.001$		-CII - NIZ	1.4 (4)	C14-	-UI3 - NI0 - UI7	40.2 (4)
$\Delta \rho_{\rm max} = 0.186 \ {\rm e \ A}^{3}$		N12 C13	130.2 (3)	013-	-NIO-CI/-CI8	-152.5 (5)
$\Delta \rho_{\rm min} = -0.266 \ {\rm e} \ {\rm A}^{-3}$	Cu-CII-	-N12-C13	- 37.3 (4)			
	Cu K α radiation $\lambda = 1.5418$ Å Cell parameters from 35 reflections $\theta = 24.30-34.46^{\circ}$ $\mu = 2.109 \text{ mm}^{-1}$ T = 293 (2) K Prism $0.42 \times 0.42 \times 0.34 \text{ mm}$ Colourless 1428 observed reflections $[I > 2\sigma(I)]$ $R_{\text{int}} = 0.0239$ $\theta_{\text{max}} = 55.00^{\circ}$ $h = -12 \rightarrow 0$ $k = 0 \rightarrow 10$ $l = -14 \rightarrow 15$ 2 standard reflections frequency: 60 min intensity decay: 5% $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.186 \text{ e Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.266 \text{ e Å}^{-3}$	Cu Kα radiation C20 C21 A = 1.5418 Å C22 Cell parameters from 35 reflections Ta θ = 24.30–34.46° Cl1–C9 µ = 2.109 mm ⁻¹ Cl2–N3 C2–N3 T = 293 (2) K N3–C4 Prism C4–Cl4 0.42 × 0.42 × 0.34 mm C4–Cl4 Colourless C6–Cl1 Cl1–N12 C2–N3 N3–C4 N5–C6 Colourless C6–Cl1 Cl1–N12 C2–N3 N3–C4 N5–C6 Colourless C6–Cl1 Cl1–N12 C2–N3 N3–C4 N5–C6 Max = 55.00° C6–Cl1 h = -12 → 0 C9–Cl0–C9 h = -12 → 0 C9–Cl0–C10 k = 0 → 10 C10–C11 l = -14 → 15 C13–N12 2 standard reflections N3–C4–N5– frequency: 60 min C14–C4–N5– intensity decay: 5% C4–N5– Cl1–C9– C9–Cl0– (Δ/σ) _{max} < 0.001	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Data collection: *DIF*4 (Stoe & Cie, 1987*a*). Cell refinement: *DIF*4. Data reduction: *REDU*4 (Stoe & Cie, 1987*c*). Program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1985). Program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993). Molecular graphics: *ORTEPII* (Johnson, 1976). Software used to prepare material for publication: *SHELXL*93.

The authors thank M. M. Vermeire for his helpful assistance in the diffractometry measurements, and the Belgian FNRS (Fonds National de la Recherche Scientifique) for financial support. One of us (JFL) is a Senior Research Assistant of the FNRS.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and least-squares-planes data have been deposited with the IUCr (Reference: PA1200). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Dupont, L., Liégeois, J.-F., Rogister, F. & Delarge, J. (1995). Acta Cryst. C51, 1889–1891.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Liégeois, J.-F. (1992). PhD thesis, University of Liège, Belgium.
- Liégeois, J.-F., Bruhwyler, J., Damas, J., Nguyen, T. P., Chleide, E., Mercier, M., Rogister, F. & Delarge, J. (1993). J. Med. Chem. 36, 2107-2114.
- Liégeois, J.-F., Rogister, F., Bruhwyler, J., Damas, J., Nguyen, T. P., Inarejos, M. O., Chleide, E., Mercier, M. & Delarge, J. (1994). J. Med. Chem. 37, 519-525.

Petcher, T. J. & Weber, H.-P. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1415–1420.

Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Stoe & Cie (1987a). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.

Stoe & Cie (1987b). EMPIR. Empirical Absorption Correction Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.

Stoe & Cie (1987c). REDU4. Data Reduction Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (1996). C52, 393-395

Absolute Configuration of (*R*)-1-Phenylethylammonium (*S*)-2-(6-Methoxy-2naphthyl)propionate

Léon Dupont, ^a* Bernard Pirotte, ^b Pascal De Tullio^b and Jacques Delarge^b

^aUnité de Cristallographie, Institut de Physique B5, Université de Liège au Sart Tilman, B-4000 Liège, Belgium, and ^bLaboratoire de Chimie Pharmaceutique, Institut de Pharmacie F1, Université de Liège, Rue Fusch, 5, B-4000 Liège, Belgium. E-mail: u210406@vm1.ulg.ac.be

(Received 19 June 1995; accepted 29 August 1995)

Abstract

The title salt, $C_8H_{12}N^+$. $C_{14}H_{13}O_3^-$, results from the reaction of known (*R*)-1-phenylethylamine with naproxen, an inhibitor of the cyclo-oxygenase responsible for the biosynthesis of prostaglandins. Naproxen exhibits antiinflammatory, analgesic and antipyretic activity in man. The crystal structure determination confirms the absolute *S* geometry of the chiral C atom of naproxen previously reported. There are three intermolecular hydrogen bonds between the NH₃⁺ and COO⁻ groups.

Comment

Naproxen, (S)-2-(6-methoxy-2-naphthyl)propionic acid, is a non-steroidal anti-inflammatory agent (Goodman & Gilman, 1980) and an optically pure carboxylic acid advantageously used in the resolution of racemic mixtures of aliphatic amines. Moreover, the determination of the crystal structure of the ammonium salt obtained from the reaction of the resolved amine with naproxen allows the identification of the absolute geometry of the chiral C atom in the pure enantiomeric amine. We report here the structure of the title salt, (I).

©1996 International Union of Crystallography Printed in Great Britain – all rights reserved

The distances and angles in the naproxen ion in the title compound are similar to those found in naproxen itself, C₁₄H₁₄O₃, (II) (Ravikumar, Rajan, Pattabhi & Gabe, 1985). The methoxy group is nearly coplanar with the naphthalene moiety in both crystal structures. However, the orientations of the naphthalene moiety with respect to the $--CH(CH_3)$ -COOH group are quite different, as shown by the torsion angles C9-C8-C13—C15 [152.5 (3) in (I), -70.5 (8)° in (II)] and C9— C8—C13—C14 $[-82.2 (4) \text{ in } (I), 48.9 (9)^{\circ} \text{ in } (II)]$. The torsion angles around the C13-C15 bond differ to a lesser extent [C8-C13-C15-O17 -83.4(3) in (I), -90.3 (8)° in (II); C14-C13-C15-O17 151.8 (3) in (I), $149.4(7)^{\circ}$ in (II)]. The determination of the structure of the title salt confirms the absolute S configuration of the chiral atom C13 of naproxen reported by Riegel, Maddox & Harrison (1974). The crystal packing is characterized by three N-H···O intermolecular hydrogen bonds, detailed in Table 3.

Fig. 1. The molecular structure of the title salt with the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level for non-H atoms; H atoms are drawn as small circles of arbitrary radii.

Experimental

(R)-(+)-1-Phenylethylamine and naproxen were obtained from Aldrich Chemie (Belgium). The salt was prepared at the Laboratory of Medicinal Chemistry of Liège.

Crystal data

 $\begin{array}{ll} C_8 H_{12} N^+ . C_{14} H_{13} O_3^- & Cu \\ M_r = 351.43 & \lambda = \end{array}$

Cu $K\alpha$ radiation $\lambda = 1.5418$ Å

Acta Crystallographica Section C ISSN 0108-2701 ©1996